摘要

图像超分辨是解决ISAR欺骗干扰中由于模型样本不完备导致难以对大带宽ISAR实现高逼真假目标模拟的重要手段。利用生成对抗网络(GAN)可通过端到端映射实现ISAR图像的超分辨,然而,当测试输入样本与训练输入样本分辨率差异较大时,超分辨图像中会出现伪散射点从而导致目标失真。考虑到循环生成对抗网络(CycleGAN)对输入样本差异适应性较好,本文提出了一种基于改进CycleGAN的ISAR欺骗干扰超分辨样本生成方法,分别从损失函数、优化过程、判别器结构三方面对CycleGAN网络结构进行改进,加快了网络的收敛速度,同时对于输入分辨率差异较大的ISAR图像泛化性能更好。利用暗室测量数据验证了所提方法的有效性,与GAN方法相比,对于训练输入样本分辨率差异较大的测试输入样本,生成的超分辨样本散射点位置与真实数据具有更好的匹配效果。