摘要
为了在水射流辅助激光加工过程中更加高效地观测工件表面的结构特征,本文提出了一种基于Retinex去雾算法的水射流辅助激光加工图像融合算法。首先,利用基于形态学理论的自适应性Retinex去雾算法解决水射流导致的气泡和表面模糊问题。通过图像区块的标准差值计算细节指数,确定高斯滤波函数的尺度,并计算单尺度函数线性叠加的权重。其次,采用离散小波变换分解聚焦区域不同的源图像序列,并根据人眼视觉原理拉伸细节分量。最后利用离散小波逆变换将分量重新融合,得到可以增强细节信息的全聚焦图像。当水射流喷嘴直径为0.4 mm时,算法处理后的图像的标准差、平均梯度和空间频率分别可以达到参考图像的95.41%、71.88%和67.29%;当射流倾斜角为45°时,上述三个指标分别达到了参考图像的90.59%、72.69%和94.50%。这表明本文所提算法有效提升了图像质量,对于在不同加工情况下获得的图像均可实现较好的处理效果,同时有助于提高加工效率。
- 单位