摘要
目的现有大多数视觉问答模型均采用自上而下的视觉注意力机制,对图像内容无加权统一处理,无法更好地表征图像信息,且因为缺乏长期记忆模块,无法对信息进行长时间记忆存储,在推理答案过程中会造成有效信息丢失,从而预测出错误答案。为此,提出一种结合自底向上注意力机制和记忆网络的视觉问答模型,通过增强对图像内容的表示和记忆,提高视觉问答的准确率。方法预训练一个目标检测模型提取图像中的目标和显著性区域作为图像特征,联合问题表示输入到记忆网络,记忆网络根据问题检索输入图像特征中的有用信息,并结合输入图像信息和问题表示进行多次迭代、更新,以生成最终的信息表示,最后融合记忆网络记忆的最终信息和问题表示,推测出正确答案。结果在公开的大规模数据集VQA (visual question answering) v2. 0上与现有主流算法进行比较实验和消融实验,结果表明,提出的模型在视觉问答任务中的准确率有显著提升,总体准确率为64. 0%。与MCB(multimodal compact bilinear)算法相比,总体准确率提升了1. 7%;与性能较好的VQA machine算法相比,总体准确率提升了1%,其中回答是/否、计数和其他类型问题的准确率分别提升了1. 1%、3. 4%和0. 6%。整体性能优于其他对比算法,验证了提出算法的有效性。结论本文提出的结合自底向上注意力机制和记忆网络的视觉问答模型,更符合人类的视觉注意力机制,并且在推理答案的过程中减少了信息丢失,有效提升了视觉问答的准确率。
- 单位