摘要

滚动轴承故障信号特征往往受背景噪声影响而难以准确提取,集合经验模式分解能将源信号有效分解出具有真实物理意义的本征模态分量,提高故障特征的诊断精度,盲源分离技术能够分离故障信号进而提取故障特征。将集合经验模态分解与盲源分离技术相结合,通过相关系数的计算和敏感因子的数值判断合理选用源信号的分量,构建出噪声信号,再通过盲源分离技术,分离噪声信号。仿真分析和实验表明,此方法可以成功的分离出典型的轴承故障特征,可有效提高轴承故障诊断效果。

全文