摘要

提出一种基于全局距离和类别信息的邻域保持嵌入算法。该方法在使用欧氏距离构造邻域图中,加入表征全局距离的全局因子和表示类别信息的函数项,全局因子可以使分布不均匀的样本变得平滑均匀,类别信息可以使同类样本点紧凑异类样本点疏离,通过提高所选邻近点的质量,优化数据的局部邻域,使降维后的数据具有更好的可分性。试验结果表明,该算法具有较高的准确率,优于传统的邻域保持嵌入算法。