摘要
K-means算法普遍应用在数据聚类分析,然而K-means算法具有不稳定性等缺陷,缺乏有效的降维能力,面对大量高维体检数据时聚类效果不佳.针对该问题,文中提出了一种基于FOA与Autoencoder的聚类改进算法,将K-means算法和Autoencoder模型结合,使用Antoencoder进行数据降维,并采用变步长果蝇优化算法的变减步长策略对Autoencoder的权重和偏移初始化方法进行改进.该算法可提高对健康体检数据聚类分析的准确度和效率,聚类轮廓系数也大幅提升,该算法应用于居民健康状况分析、疾病预测等方面表现出了较高的效率.
- 单位