摘要

家庭用电是能源市场的一个重要组成部分,预测家庭用电需求能够实现智能供电,可以有效地提高供给率,但目前预测方法大多效果不佳。针对此,提出了一种基于LSTM的面向家庭智能用电预测算法,建立了端到端的智能家庭用电预测模型。其在Boruta特征筛选的基础上设计了特征选择方法,对多个特征进行重要性计算,选取其中重要性高的部分进行建模,然后利用LSTM网络与全连接层对时间序列数据进行训练,得到预测模型。实验结果表明,所提方法的预测效果明显优于其他三种模型,能与真实数据较好地拟合。