摘要

为了提高数据挖掘中异常检测算法在数据量增大时的准确度、灵敏度和执行效率,本文提出了一种基于MapReduce框架和Local Outlier Factor(LOF)算法的并行异常检测算法(MR-DLOF)。首先,将存放在Hadoop分布式文件系统(HDFS)上的数据集逻辑地切分为多个数据块。然后,利用MapReduce原理将各个数据块中的数据并行处理,使得每个数据点的k-邻近距离和LOF值的计算仅在单个块中执行,从而提高了算法的执行效率;同时重新定义了k-邻近距离的概念,避免了数据集中存在大于或等于k个重复点而导致局部密度为无穷大的情况。最后,将LOF值较大的数据点合并重新计算其LOF值,从而提高算法准确度和灵敏度。通过真实数据集验证了MR-DLOF算法的有效性、高效性和可扩展性。