摘要

文本意图识别任务中常面临训练数据不足的问题,且由于文本数据离散性导致在标签不变的条件下进行数据增强并提高原模型性能具有一定困难,为解决小样本意图识别任务中的上述问题,提出一种分步式数据增强与阶段性训练策略相结合的方法.该方法从全局和局部两个角度将原始数据在全体语句和同类别中的样本对上进行递进式增强,并在模型训练期间根据递进层次的不同划分阶段进行学习,最后在多个意图识别数据集上进行实验以评估其有效性.实验结果表明,该方法可以有效提高小样本环境中意图识别模型的准确率,同时模型的稳定性也得到了提升.

全文