基于贝叶斯神经网络的机床热误差建模

作者:王子涵; 杨秀芝; 段现银; 蒋宇辉; 王兴东
来源:制造技术与机床, 2022, (01): 141-145.
DOI:10.19287/j.cnki.1005-2402.2022.01.026

摘要

热误差严重影响着机床的加工精度,对机床关键部件进行热特性分析是开发精密机床的重要环节。通过测量包括数控机床的特殊位置温度和定位误差在内的热特性,研究了温升与定位误差之间的关系,提出了一种基于贝叶斯神经网络的热误差建模方法。通过K-means聚类和相关系数法来选择温度敏感点,可以有效地抑制温度测量点之间的多重共线性问题。结果表明:通过使用贝叶斯神经网络能提高机床88.015 9%的精度,比BP神经网络高出15.763 8%,与BP神经网络模型相比,贝叶斯神经网络具有更加优良预测性能。贝叶斯神经网络模型为降低机床热误差的影响提供了新思路。

全文