朴素贝叶斯分类器由于其强独立性假设,并不考虑属性之间的相互关系,而入侵检测的数据集不能很好地满足这一条件假设。为此,提出了一种基于有向完全图的贝叶斯分类器,将属性之间的关系加入到分类器的构造中,降低了朴素贝叶斯分类器的强独立性假设,并将其应用于入侵检测中。在MIT入侵检测数据集的实验表明,该算法能提高入侵检测的准确率,其效果很好。