摘要

为克服传统预测方法只单独考虑少量参量的不足,提出了一种基于多因素的变压器油中溶解气体体积分数预测方法。收集变压器油中溶解气体在线监测数据、EMS数据和气象数据,通过数据预处理完成各类数据的清洗和同步。利用灰色关联分析方法确定与待预测气体关联度较高的关键输入参量,有效约简输入数据的维数;建立基于KNN回归的多因素预测模型,实现变压器正常状态下油中溶解气体体积分数的预测。收集变压器故障案例库中的故障样本数据,针对单台设备故障数据稀缺的特点,利用关联分析方法筛选与故障设备情况相近的故障案例作为输入数据,并将关联度确定为各输入的权重。建立基于故障样本加权均值回归的多因素预测方法,实现故障状态下变压器油中溶解气体体积分数预测。实例分析表明,相比于常规的预测方法,将多种影响因素合理纳入预测模型,有效提高了油中溶解气体体积分数的预测精度。

  • 单位
    输配电装备及系统安全与新技术国家重点实验室; 国网山东省电力公司电力科学研究院; 重庆大学

全文