摘要

边坡失稳,滑体滑出,滑体由稳定静止状态变为运动状态,同时产生很大的且无限发展的位移,这就是边坡破坏的特征。有限元中通过强度折减使边坡达到极限破坏状态,滑动面上的位移和塑性应变将产生突变,且此位移和塑性应变的大小不再是一个定值,有限元程序无法从有限元方程组中找到一个既能满足静力平衡又能满足应力-应变关系和强度准则的解,此时,不管是从力的收敛标准,还是从位移的收敛标准来判断有限元计算都不收敛。塑性区从坡脚到坡顶贯通并不一定意味着边坡破坏,塑性区贯通是破坏的必要条件,但不是充分条件,还要看是否产生很大的且无限发展的塑性变形和位移,有限元计算中表现为塑性应变和位移产生突变。在突变前计算收敛,突变之后计算不收敛,表征滑面上土体无限流动,因此可把有限元静力平衡方程组是否有解,有限元计算是否收敛作为边坡破坏的依据。-

  • 单位
    中国人民解放军陆军勤务学院