摘要
随着卷积神经网络得到愈加广泛的应用,针对其复杂运算的定制硬件加速器得到越来越多的重视与研究。但是,目前定制硬件加速器多采用传统的卷积算法,并且缺乏对神经网络稀疏性的支持,从而丧失了进一步改进硬件,提升硬件性能的空间。重新设计一款卷积神经网络加速器,该加速器基于Winograd稀疏算法,该算法被证明有效降低了卷积神经网络的计算复杂性,并可以很好地适应稀疏神经网络。通过硬件实现该算法,本文的设计可以在减少硬件资源的同时,获得相当大的计算效率。实验表明,相比于传统算法,该加速器设计方案将运算速度提升了近4.15倍;从乘法器利用率的角度出发,相比现有的其他方案,该方案将利用率最多提高了近9倍。
- 单位