摘要

全连接网络作为深度学习中的一种典型结构,几乎在所有神经网络模型中均有出现。在近红外光谱定量分析中,光谱数据样本数量较少,但每个样本的维度高。导致了两个问题:将光谱直接输入网络,网络的参数量会十分庞大,训练模型需要更多的样本,否则模型容易进入过拟合状态;在输入网络前对光谱进行降维,虽解决了网络参数量过大的问题,但会丢失一部分信息,无法充分发挥网络的学习能力。针对近红外光谱的特性,提出了一种分组全连接的近红外光谱定量分析网络GFCN。该网络在传统的两层全连接网络的基础上,用若干个小的全连接层替代第一个全连接层,克服了直接输入光谱导致网络参数量过大的缺点。采用Tecator和IDRC2018数据集对该方法进行测试,同时与全连接网络FCN和偏最小二乘PLS两种方法进行对比。结果显示:在两个数据集上,GFCN预测效果均优于FCN和PLS。在只有少量样本参与建模的情况下,GFCN依然能够保持较高的预测效果。表明,GFCN可以用于近红外光谱的定量分析,并且适应样本较少的场景,具有重要的研究价值和广泛的应用场景。