摘要
为准确测量农田平整度,测量装置采用超声波传感器间接测量与磁致伸缩位移传感器直接测量相结合,并通过姿态传感器与陀螺仪获取测量装置姿态辅助修正测量值,通过LSTM神经网络的不同数量训练集对其测量值进行趋势变化预测。试验结果表明,测量装置磁致伸缩位移传感器测量过程中稳定性优于超声波传感器,通过卡尔曼分布式融合数据能有效滤除噪声,再分别通过前10 s、前20 s与前30 s数据做训练集,来进行预测分析,其均方根误差平均值为2.42,平均绝对误差平均值为2.67。试验结果表明,Kalman滤波融合数据与预测数据的均方根误差与平均绝对误差较小,能准确反映与预测平整度变化趋势,使测量装置准确的测量农田平整度及预测变化趋势。
- 单位