运用深度学习对物体表面缺陷进行检测已经成为了一种越来越受关注的自动化检测方法。针对混凝土表面缺陷,我们设计了一种两段式的学习网络。第一部分是从原始图像的各层特征图中逐像素的学习特征以完成对图像的像素分割,并进行上采样还原至原图像大小。第二部分是对图像中是否存在缺陷做出判断。实验结果表明,该方法分割准确率高,鲁棒性强,适合于混凝土表面缺陷检测。