摘要
金融科技发展进程中,网络舆情或许能给该行业指标数据的预测做出贡献,但相关研究尚不充分。本文将万得(wind)数据库中金融科技股票的交易数据作为金融科技行业的缩影,利用情感分类模型对爬取的11万余条微博文本中的投资者情绪进行挖掘。研究发现:负向投资者情绪占比对84只金融科技股票样本的平均收盘价存在负向影响,且具有长期稳定的均衡关系。进而,本文构建了以负向投资者情绪、工作日变量及其他金融科技股票量化指标数据为模型输入、预测金融科技股票平均收盘价指标数据的长短时间记忆神经网络模型(Long Short-Term Memory,LSTM)。结果表明:引入投资者负向情绪占比后,实验组LSTM模型比对照组的预测评价指标结果更加优秀,表明网络舆情对金融科技股票收盘价预测具有重要作用;实验组LSTM模型在不同预测期限上的预测效果评价指标均优于其他对照模型(随机森林、多层神经网络和支持向量回归模型),进一步证实了其良好的预测性能和模型稳健性。本文研究进一步丰富了自然语言处理和深度学习技术在金融科技领域的研究,为金融科技行业相关指标数据的预测提供了新的思路。
- 单位