摘要
分析并总结了影响用户对特定微博兴趣的若干因素,在此基础上基于潜在因素模型提出了1个融合显式特征和潜在特征的社区热点微博推荐算法(community micro-blog recommendation,CMR),并将其用于发现微博兴趣社区热点信息.算法在3个兴趣社区上进行了实验,结果表明:1)融合2种特征信息的微博推荐效果好于使用单一特征信息的推荐;2)CMR的推荐效果好于基于转发次数的对照实验(micro-blog repost rank based recommendation,MRR);3)通过分析各个算法所推荐的微博内容,发现CMR倾向于为用户推荐兴趣社区相关微博,而MRR倾向于为用户推荐公共热点微博.
-
单位中国科学院软件研究所; 计算机科学国家重点实验室