摘要
当前的显著性检测算法在复杂场景下难以分割出完整显著性区域以及锐利的边缘细节。针对这一问题,文中提出了一种新颖的特征融合算法。该方法利用全卷积神经网络获取多个层次粗糙的初始特征并结合特征金字塔结构对其深度解析。设计渐进结构感受野模块将特征转换至不同尺度的空间进行优化,实现特征的渐进融合与传递,有选择性地增强显著性区域。采用全局注意力机制消除背景噪声并建立显著性像素之间的长距离依赖,以提高显著性区域的有效性,突出显著性目标,再通过学习融合个层次特征得到显著图。综合实验表明,在绝对误差减小的情况下,F-measure指标远超出其他7种主流方法。所提的显著性模型综合了全卷积神经网络和特征金字塔结构的优点,结合文中设计的渐进结构感受野和全局注意力机制,使得显著图更接近真值图。
- 单位