摘要

我国是工业铝型材制造大国,铝型材生产质量检测意义重大。针对传统的人工目测等方式检测效率低下,稳定性相对较弱;单一YOLOv3方法特征提取不突出,检测精度有限等问题,提出一种基于图像融合与YOLOv3的铝型材表面缺陷检测方法。首先利用图像增强、空域滤波的方法对原始图像进行预处理得到处理图像;然后借鉴SLAM中特征提取与匹配的思想对原始图像和处理图像进行特征提取与匹配;之后进行图像融合得到最终的处理后图像;再通过K-means算法聚类和调参优化,最后利用单阶段物体检测模型YOLOv3对铝型材表面缺陷进行检测。通过一个end-to-end的全卷积神经网络完成从原始图像的输入到Bounding box和box中物体类别与置信度的输出。实验结果表明,此图像融合与YOLOv3的方法对表面缺陷分类检出的平均成功率为98. 33%,比单一YOLOv3方法提高了3. 75个百分点;验证集m AP值为88. 81%,提高了4. 18个百分点,具有更强的特征提取能力和泛化能力,能精确检测表面缺陷,进行分类和定位。