摘要

为实现红外与可见光图像的优势互补,提高机器视觉的环境适应性,提出一种基于动态范围压缩增强和非下采样剪切波变换的红外与可见光图像融合算法。首先,用动态范围压缩增强方法增强弱可见光图像。其次,利用非下采样剪切波变换提取红外与可见光图像的低频和高频系数。接着,对高频系数实施硬阈值收缩,抑制高频中的噪声。然后,分别采用视觉显著图加权的“平均”融合方法和绝对值取大融合方法对低频和高频系数进行融合。最后,通过非下采样剪切波变换逆变换得到最终融合图像。实验表明,该算法可以有效保留原图像的边缘特征和纹理细节,显著提高融合图像的清晰度和对比度。