摘要

针对船舶航行轨迹识别,为提高识别率,进行深入研究,提出一种采用附加动量法和自适应学习速率法的改进BP神经网络方法。采用附加动量不断修正BP神经网络的权重,加快网络收敛速度,在迭代过程中进行学习率自适应调整,减少迭代次数。运用改进BP神经网络和传统BP神经网络对船舶自动识别系统(automatic identification system,AIS)信息进行训练,分别建立分类识别模型。以安徽巢湖水域为例进行实验,实验结果表明,改进BP神经网络对船舶轨迹识别具有更高的准确率。