摘要
针对自然环境下获取农作物图像时极易受到光照干扰的问题,提出一种改进的简单线性迭代聚类(SLIC)方法,以[L*,R,G-S,x,y]作为聚类向量对茶树冠层图像进行超像素分割,提取超像素块的R、G、B、H、S、V、L*、a*、b*、熵、能量、对比度、逆差矩等13个图像特征参数;将超像素块分为正常区域、反光区域、背景3类,分别选择线性、多项式和RBF核函数的SVM进行分类,得到仅包含正常区域的茶树冠层图像,进而提取正常区域的图像特征参数。试验结果表明,在光照变化情况下,改进的SLIC与RBF-SVM结合得到的图像特征最为稳定。
- 单位