摘要

面对海量高维信用数据,传统贝叶斯网络在刻画变量复杂结构和概率关系时遇到了挑战。尝试将基于multi-logit回归的离散贝叶斯网络稀疏方法用于个人信用影响因素结构关系的发现,实现从多维变量复杂关系中抓取重要结构关系;基于解路径探讨了用于结构发现的稀疏贝叶斯网络模型的选择标准,并比较了稀疏贝叶斯网络与经典贝叶斯网络结构学习的性能;结合领域先验知识进一步改进贝叶斯网络结构,定性分析多维变量存在的主要结构关系;在确定多维变量稀疏网络结构的基础上,采用贝叶斯后验估计获取模型参数,并利用贝叶斯网络推理定量分析关键变量对信贷客户类型的直接或间接影响。

  • 单位
    山西财经大学