摘要

针对海底油气管道外腐蚀问题构建模型预测其腐蚀速率,建立基于改进鹈鹕优化算法(Improvement Pelican Optimization Algorithm, IPOA)的BP神经网络(Back Propagation Neural Network, BPNN)腐蚀速率预测模型。通过Logistic-Tent混沌映射初始种群与收敛因子非线性化的方法提高鹈鹕算法(POA)的全局搜索能力和寻优精度,采用IPOA算法优化BPNN的权值和阈值,提升模型的预测精度与鲁棒性。以实海挂片试验数据为基础,建立POA-BPNN和BPNN模型作为对比。结果表明:IPOA-BPNN模型的决定系数R2为0.966 4,均方误差为0.235 3,平均相对误差为3.16%,均优于其余两个模型,模型的鲁棒性较未改进有较大的提升。这表明IPOA-BPNN模型能够为海底管道的维修与更换提供决策支持。

  • 单位
    石油大学机电工程学院

全文