摘要
经皮耳迷走神经电刺激(taVNS)作为新兴的精神和心血管疾病的治疗方法,其刺激强度设置需要将刺激电流调整至疼痛阈值后再降低其幅值。该设置方式不仅缺乏一致性,且影响治疗效果和舒适度。本文提出了一种结合心率变异性(HRV)特征和机器学习回归模型的新方法,实现了taVNS疼痛阈值的预测。基于实验采集的数据,系统的比较了将HRV特征作为各种机器学习模型输入的预测精度。结果表明,HRV特征与极端随机树的组合性能最优,使用遗传算法去除冗余特征能够有效改善模型预测性能,均方根误差在1.18到1.56之间,均方差在0.77到0.96之间。该方法可用于不同个体的taVNS刺激强度的预测,对受试者在taVNS期间的治疗效果有积极作用。
- 单位