摘要
在深度信念网络(Deep Belief Network, DBN)应用于图像、视频等领域中,研究者们普遍通过实践经验设置DBN基本网络结构—DBN深度及每层神经元的个数。将DBN模型作为入侵检测分类模型,提出了DBN模型中基本网络结构的适应度标准,利用该标准提出了一种用于寻找DBN优化网络结构的改进粒子群优化算法。算法首先利用鱼群思想优化粒子群优化算法搜索初始优化网络结构,然后将初始优化网络结构作为利用滑动窗口优化粒子群算法的初始值,继续寻优直到找到全局优化网络结构。将优化算法构造的DBN模型作为入侵检测分类模型进行实验,实验结果表明,相较其它优化算法,方法显著提高了入侵检测分类准确率,明显降低了入侵检测误报率和检测时间,是一种高效且可行的入侵检测分类模型构建和优化方法。
- 单位