联合损失监督的高频工件深度学习识别算法

作者:杨涛; 欧阳; 苏欣; 吴学杰; 李柏林
来源:机械制造与自动化, 2023, 52(01): 30-47.
DOI:10.19344/j.cnki.issn1671-5276.2023.01.007

摘要

针对高频工件种类多、类间相似度较高造成的识别准确率低的问题,提出一种联合损失监督的深度学习识别算法。搭建基于卷积神经网络的图像特征向量编码模型,采用角度余量损失替换SoftMax损失,以减小工件类内特征之间的距离,完成同类工件的鲁棒性表示;引入隔离损失以增大异类工件特征之间的距离,实现异类工件的良好性区分。实验结果表明:该方法相较于传统的图像识别方法,识别准确率更高;相较于单一的角度余量和隔离损失,识别准确率分别提高了3.97%和13.88%。

全文