摘要
针对高频工件种类多、类间相似度较高造成的识别准确率低的问题,提出一种联合损失监督的深度学习识别算法。搭建基于卷积神经网络的图像特征向量编码模型,采用角度余量损失替换SoftMax损失,以减小工件类内特征之间的距离,完成同类工件的鲁棒性表示;引入隔离损失以增大异类工件特征之间的距离,实现异类工件的良好性区分。实验结果表明:该方法相较于传统的图像识别方法,识别准确率更高;相较于单一的角度余量和隔离损失,识别准确率分别提高了3.97%和13.88%。
-
单位中国电子科技集团公司第十研究所; 西南交通大学