摘要
针对传统电弧故障检测方法依赖人为设定阈值、存在保护误动作以及现有人工智能方法需要预先提取特征、计算量大的问题,提出一种基于改进AlexNet模型的串联型电弧故障检测方法;该方法直接采用原始电流波形作为模型输入,避免数据特征预处理;利用Inception结构对AlexNet模型结构进行改进,减少网络参数,并采用随机梯度下降算法与学习率自适应调整方法对模型训练策略进行优化,分别利用已知负载与未知负载对所提方法进行试验验证。结果表明,该模型电弧故障识别准确率达到97.5%以上。
-
单位浙江省机电产品质量检测所; 河北工业大学; 国网冀北电力有限公司