摘要
城市公交车辆行程时间预测是公共交通信息服务和运营调度的重要内容,要求较高的实时性和准确性。本文以智能交通运输系统为背景,通过分析公交车辆的行驶特性,基于改进的神经网络模型,建立了公交车辆动态行程时间预测模型,并对比了三种不同输入变量方案的神经网络预测模型,表明该模型具有良好的适用性。此外,将该方法与卡尔曼滤波法的行程时间预测模型进行比较,结果表明,基于神经网络的动态行程时间预测模型精确度较高。
- 单位
城市公交车辆行程时间预测是公共交通信息服务和运营调度的重要内容,要求较高的实时性和准确性。本文以智能交通运输系统为背景,通过分析公交车辆的行驶特性,基于改进的神经网络模型,建立了公交车辆动态行程时间预测模型,并对比了三种不同输入变量方案的神经网络预测模型,表明该模型具有良好的适用性。此外,将该方法与卡尔曼滤波法的行程时间预测模型进行比较,结果表明,基于神经网络的动态行程时间预测模型精确度较高。