摘要
目的:为了满足临床新冠肺炎检测的实际需求,提出一种基于轻量级人工神经网络的新冠肺炎CT新型识别技术。方法:首先,选取目前公开的所有新冠肺炎CT图像数据集,经过图像亮度规范化和数据集清洗后作为训练数据,通过大样本提高深度学习的泛化能力;其次,采用GhostNet轻量级网络简化网络参数,使深度学习模型能够在医用计算机上运行,提高新冠肺炎CT诊断的效率;再次,在网络输入中加入肺部区域分割图像,进一步提高新冠肺炎CT诊断的准确性;最后,提出加权交叉熵损失函数减小漏诊率。结果:在本研究构建的数据集上进行测试,所提出方法的精确率、召回率、准确率和F1值分别为83%、96%、90%和88%,且在医用计算机上耗时为236 ms。结论:本研究提出方法的效率和准确性均优于其他对比算法,能较好地适应新冠肺炎诊断的需求。
-
单位北京航空航天大学; 电子信息工程学院