摘要
针对铁路智能巡检系统中开口销缺陷样本不足的问题,通过改变传统接触网部件状态检测思路,提出了一种基于图像语义分割的开口销状态检测方法.将开口销语义信息分为头部信息与尾部信息并进行多边形标注,训练DeepLabv3+模型,提取开口销的信息,分析开口销头部与尾部连通域及其之间的关系,从而判断开口销状态.使用了语义分割的方法,在训练过程中只使用正常的开口销样本,无须专门搜集或制作开口销缺陷样本.验证算法的检测精度,取开口销正常状态、缺失状态、松脱状态和非开口销区域的样本数分别为1 000,20,50和1 000,识别率分别达到95.3%,100.0%,84.0%和98.7%.
- 单位