摘要
多尺度卷积神经网络模型在网络入侵检测中可获取更丰富的局部特征。针对浅层卷积核神经网络获取数据局部特征能力较差的不足,文中基于多尺度卷积神经网络,提出一种改进的列车通信专用网络入侵检测模型。该模型对Inception V3网络加以改进,并将模型部分大尺寸卷积核进行合理缩小并串联,以增强模型获取数据局部特征的能力;同时结合循环神经网络对时间序列的学习能力,利用Bi-GRU模型对局部特征进行学习,使模型训练后的数据也具有全局特征。实验测试结果表明:所设计模型在二分类测试中的准确度与Inception V3模型相比提升约1.3%,运行时间缩短近5.2 s;在五分类测试中,与其他对比算法相比准确度平均提升1.7%。该模型有良好的性能及效率,可有效且准确地对网络入侵进行检测。
-
单位西南交通大学; 土木工程学院; 成都久信信息技术股份有限公司; 中共四川省委党校; 成都地铁运营有限公司