摘要
基于红外图像的电气设备识别及其温度异常检测对摄像机拍摄角度变化敏感,提出一种基于导向型级联可形变卷积神经网络的户外电力设备识别检测算法。对残差网络进行改进,在网络的后三个残差块中加入可形变卷积层,以便更好地提取电气设备的特征;利用像素点的概率得分图,预测候选像素点;三个级联的检测器将标定的真实框与算法生成的候选预测框进行阈值筛选,得到最终的预测框。建立并标记了近万张包括绝缘子、电流互感器、避雷器、断路器、隔离开关、套管等6种电气设备及其温度异常数据集ELE,实验结果表明该算法检测平均精度均值(mAP)达到95.3%,对包含小目标温度异常区域检测的mAP达到了88.1%。
-
单位电子工程学院; 天津理工大学