提出了一种基于FDH的分区域多目标遗传算法(FDH-MOGA)。该算法通过FDH对种群中所有个体进行评价,根据评价所得的效率值和拥挤度对种群进行选择,提高了该算法的局部搜索能力,同时引入分区策略增加算法的搜索范围,有效避免了遗传算法早熟的缺陷,提高了所获解的多样性。对多个测试函数以及投资组合优化问题的测试结果显示,FDH-MOGA算法具有良好的计算性能,更具有效性。