摘要

应用Matlab软件构建单隐层BP神经网络,并对中压加氢裂化装置航煤性质进行软测量应用。以700组样本数据作为训练集,对预测航煤闪点、终馏点模型进行训练。结果表明,在152组验证数据集上模型对闪点、终馏点预测分别取得1.57℃和2.74℃的均方误差(RMSE),随之在80组测试数据集上模型取得的泛化RMSE分别为1.87℃和1.98℃。以300组样本数据作为训练集,对预测航煤密度的模型进行训练。结果表明,在100组验证集上模型RMSE为2.18 kg·m-3,随之在70组测试数据集上的泛化RMSE为2.72 kg·m-3。BP神经网络的泛化RMSE表明,通过合理选择特征变量和设计网络结构,单隐层BP神经网络能够满足航煤性质的工业软测量要求。