摘要

针对复杂城市监控场景中由于目标尺寸变化大、目标遮挡、天气影响等原因导致目标特征不明显的问题,该文提出一种基于注意力机制的多尺度全场景监控目标检测方法。该文设计了一种基于Yolov5s模型的多尺度检测网络结构,以提高网络对目标尺寸变化的适应性。同时,构建了基于注意力机制的特征提取模块,通过网络学习获得特征的通道级别权重,增强了目标特征,抑制了背景特征,提高了特征的网络提取能力。通过K-means聚类算法计算全场景监控数据集的初始锚框大小,加速模型收敛同时提升检测精度。在COCO数据集上,与基本网络相比,平均精度均值(mAP)提高了3.7%,mAP50提升了4.7%,模型推理时间仅为3.8 ms。在整个场景监控数据集中,mAP50达到89.6%,处理监控视频时为154 fps,满足监控现场的实时检测要求。