摘要

相较于线性调频(LFM)信号,双曲调频(HFM)信号因具有良好的脉冲压缩性能和多普勒不变性,被广泛用于雷达侦查、水声探测等多普勒影响严重的场景中,其中HFM信号的参数估计问题尤为重要。有鉴于此,该文提出一种基于似然函数的HFM信号参数估计快速算法。文中首先推导出HFM信号的Cramer-Rao下界作为参数估计的性能评估标准;然后基于高斯随机噪声,构建了HFM信号的似然函数,并结合数据向量化的特点提出一种改进的适应度函数,最后利用全局最优引导人工蜂群(GABC)算法对该适应度函数进行极值寻优,从而实现HFM信号的参数估计;通过蒙特卡洛仿真证明了该方法在信噪比为3 dB以上时,HFM信号的参数估计结果的均方误差更逼近Cramer-Rao下界,且运算量约是原来的1/3,在保证估计精度的同时提高算法收敛速度。