摘要
将混沌Tang系统增加一个非线性项,得到新的超混沌Tang系统,利用有限时间滑模控制理论研究不确定分数阶超混沌Tang系统的有限时间滑模同步,根据分数阶微积分并通过构造滑模函数和控制器及设计自适应规则,取得不确定分数阶超混沌Tang系统有限时间滑模同步的充分性条件,并把分数阶得到的相关结论平推到整数阶情形,用数值仿真验证了所得结论.
-
单位数学学院; 郑州航空工业管理学院
将混沌Tang系统增加一个非线性项,得到新的超混沌Tang系统,利用有限时间滑模控制理论研究不确定分数阶超混沌Tang系统的有限时间滑模同步,根据分数阶微积分并通过构造滑模函数和控制器及设计自适应规则,取得不确定分数阶超混沌Tang系统有限时间滑模同步的充分性条件,并把分数阶得到的相关结论平推到整数阶情形,用数值仿真验证了所得结论.