基于改进Faster R-CNN的花色布瑕疵检测算法

作者:费利斌; 徐洋*; 余智祺; 孙以泽; 季诚昌
来源:东华大学学报(自然科学版), 2022, 48(02): 75-80.
DOI:10.19886/j.cnki.dhdz.2020.0524

摘要

针对布匹瑕疵自动化检测,基于传统的机器视觉方法依赖于人工设计特征,对具有复杂背景图案的花色布瑕疵特征提取难度非常大,因此提出一种基于改进Faster R-CNN(faster region with convolutional neural network)的花色布瑕疵检测算法。在Faster R-CNN的基础上使用Resnet-50作为主干网络,嵌入可变形卷积来提高瑕疵特征的学习能力。通过设计多尺度模型来提高小瑕疵的检测,引入级联网络来提高瑕疵检测精度和定位准确度,构造优化的损失函数来降低样本不平衡影响。通过试验验证了该算法的有效性。结果表明,瑕疵检测效果准确率达94.97%,并能精准定位瑕疵位置,可满足工厂的实际需求。

全文