摘要
提出了一种基于粒子群-支持向量机(PSO-SVM)及时序环节的数控刀架故障诊断方法。首先,将数控刀架划分为5个子系统,并将一个工作周期划分为4个时序环节(T1、T2、T3、T4);其次,探索了数控刀架不同时序环节振动、电机电流、油压以及接近开关等信号的特征提取方法;最后,提出了基于PSO-SVM的数控刀架故障诊断方法,并开展了不同时序环节的数控刀架故障试验。根据故障数据对支持向量机(SVM)和PSO-SVM两种故障诊断方法进行了对比验证。结果表明:时序环节T2、T3和T4的故障诊断准确率分别提高了28%、23%和5%,验证了该故障诊断方法的有效性。本文方法不仅适用于数控刀架,还为其他复杂机电系统的故障诊断研究提供了一个新思路。
- 单位