摘要
针对多扩展目标的跟踪问题,提出了基于时空关联—网格聚类的多扩展目标跟踪算法。根据时空相关性,将当前量测分为存活目标量测和新生目标量测。对存活目标,利用模糊C均值(FCM)算法进行量测划分,由高斯混合—概率假设密度(GM-PHD)滤波器得到存活目标轨迹。对新生目标,用网格聚类完成量测集划分,由扩展目标—高斯混合—概率假设密度(ET-GM-PHD)滤波器得到新生目标的轨迹。仿真结果表明:所提算法能够对多扩展目标进行准确跟踪,特别是在目标交叉时刻,估计目标数目更准确,算法实时性更好。
-
单位南京航空航天大学; 自动化学院