<正>在解答比较复杂的代数问题时,我们通常会采用换元法来帮助我们理清题目中的数量关系,使问题化难为易、化繁为简,然后顺利获解.运用换元法解题首先要根据问题的特征或数量关系引进新的辅助元来替换原问题中的数、字母、式子等,然后求出新元的值,再将求得的值带回所设的换元式,带入替换关系中,求出原来的未知量或变量,最后对解出的答案进行检验.本文主要介绍换元法在因式分解、解方程以及整式运算中的应用.一、换元法在因式分解中的妙用