牵引网过电压严重影响电气化铁路正常运行,对牵引网过电压进行类型辨识有利于提高牵引供电系统的可靠性。针对牵引网过电压的非线性和不稳定性,本文利用短时傅里叶变换将过电压时域波形转化为二维的时频图;先通过局部特征提取和设置阈值,实现对铁磁谐振过电压的快速识别;再利用卷积神经网络的自学习能力挖掘时频图特征与牵引网过电压信号的深层次关系,实现对机车进出分相、断路器开闭操作过电压和高频谐振过电压的识别。实验结果表明,该方法的准确度在90%以上。