针对网络入侵检测无法识别新的入侵行为,利用增量学习不断完善分类器,使得分类器可以识别新的入侵行为。提出一种基于相似度的增量支持向量机算法,该算法依据新增样本与支持向量之间的相似度来选择样本(当前分类器缺少该样本的空间信息),然后加入训练集中参加下一次迭代训练。实验结果表明,该算法能够提高最终分类器的分类精度和算法的训练速度。