摘要
目的 建立一种新的3D多序列关系注意力网络,通过探索不同磁共振成像(MRI)序列图像的互补和相关信息,提升对人类白细胞抗原(HLA)-B27阴性中轴性脊柱关节病(axSpA)的诊断性能。方法 回顾性收集2010年1月~2021年8月南方医科大学第三附属医院(TAH组)的375例和南海医院(NHH组)的49例HLA-B27阴性参与者(TAH组:164例axSpA,211例非axSpA;NHH组:27例axSpA,22例非axSpA)的两种参数MRI,包括T1加权图像(T1WI)和压脂序列MRI(FS-MRI),以及相关临床数据。提出一个基于多序列MRI的3D关系注意力网络MSFANet,实现对HLA-B27阴性axSpA与非axSpA的自动鉴别诊断。MSFANet由一个浅层共享特征模块和一个类感知特征学习模块组成,其中类感知特征学习模块采用3D多序列关系注意力机制对多序列MRI特征进行细化和融合。提出一种混合损失函数,通过学习不同支路的损失权重系数来提升MSFANet对序列特征的识别能力,从而增强分类性能。结果 实验结果表明,MSFANet优于其它几种最先进的多序列融合算法,其中内部验证集上的AUC、准确度、敏感度和特异度分别达到了0.840,77.93%,83.70%和70.29%,独立外部验证集(NHH)上的上述性能分别达到了0.783,74.47%,82.43%和70.40%。各项差异均具有统计学意义(P<0.05)。此外,消融实验显示,相同框架下,MSFANet的性能优于基于单序列MRI的模型,证实了融合多序列MRI的有效性和必要性。深度可视化技术显示MSFANet在分类过程中集中于学习图像异常区域的信息。结论 本研究成功构建基于多序列MRI的3D深度神经网络对HLA-B27阴性axSpA和非axSpA进行鉴别诊断,并验证了采用多序列关系注意力机制对提升网络分类性能的有效性。
-
单位生物医学工程学院; 省骨科医院; 南方医科大学; 南方医科大学第三附属医院