摘要
针对短文本数据特征少、提供信息有限,以及传统卷积神经网络(convolutional neural network,CNN)和循环神经网络(recurrent neural network,RNN)对短文本特征表示不充分的问题,提出基于串并行卷积门阀循环神经网络的文本分类模型,处理句子特征表示与短文本分类。该网络在卷积层中去除池化操作,保留文本数据的时序结构和位置信息,以串并行的卷积结构提取词语的多元特征组合,并提取局部上下文信息作为RNN的输入;以门阀循环单元(gated recurrent unit,GRU)作为RNN的组成结构,利用文本的时序信息生成句子的向量表示,输入带有附加边缘距离的分类器中,引导网络学习出具有区分性的特征,实现短文本的分类。实验中采用TREC、MR、Subj短文本分类数据集进行测试,对网络超参数选择和卷积层结构对分类准确率的影响进行仿真分析,并与常见的文本分类模型进行了对比实验。实验结果表明:去掉池化操作、采用较小的卷积核进行串并行卷积,能够提升文本数据在多元特征表示下的分类准确率。相较于相同参数规模的GRU模型,所提出模型的分类准确率在3个数据集中分别提升了2.00%、1.23%、1.08%;相较于相同参数规模的CNN模型,所提出模型的分类准确率在3个数据集中分别提升了1.60%、1.57%、0.80%。与Text–CNN、G–Dropout、F–Dropout等常见模型相比,所提出模型的分类准确率也保持最优。因此,实验表明所提出模型可改善分类准确率,可实际应用于短文本分类场景。
-
单位重庆邮电大学; 自动化学院