为改善当今石油供需矛盾和环境问题,针对乘用车提出了基于LSTM神经网络的燃油乘用车能耗预测模型。通过纵向动力学建模并匹配相应车型进行求解,结合GB/T 38146.1行驶工况数据,得出能耗随时间的变化率。构建LSTM神经网络架构,根据处理后的数据样本,对LSTM神经网络进行训练和评价。最后,通过LSTM神经网络和BP神经网络的仿真对比表明,随着迭代周期的增加,LSTM神经网络模型具有更高的精度,对能耗预测的准确性较好,对改善无人驾驶车辆的节能减排具有工程应用价值。