摘要
为快速高效获取叶类植物叶片的外部表型参数、掌握植株生长状况,以绿萝叶片为研究对象,提出一种基于几何模型的叶长、叶宽与叶面积的三维估测方法。利用微软Kinect V2相机,自80 cm高度垂直位姿获取绿萝叶片局部点云,并进行直通滤波去噪与包围盒精简等预处理,测量得到点云外形参数,输入预先建立的SAE网络分类预测得到几何模型参数,并基于曲面参数方程建立叶片几何模型。采用粒子群优化算法计算几何模型离散点云和局部点云间的空间距离,进行空间匹配,利用遗传算法求解最优匹配模型的内部模型参数,输出最优匹配模型的叶长、叶宽与叶面积作为估测结果。实验共采集150片绿萝叶片的局部点云数据,将估测结果和真实值进行数学统计与线性回归分析,得出叶长、叶宽与叶面积估测的平均误差分别为0.46 cm、0.41 cm和3.42 cm2,叶长估测R2和RMSE分别为0.88和0.52 cm,叶宽R2和RMSE分别为0.88和0.52 cm,叶面积R2和RMSE分别为0.95和3.60 cm2。实验表明,该方法对于绿萝叶片外形参数的估测效果较好具有较高实用价值。
- 单位